{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Events detection\n", "This tutorial shows how to detect and event." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## STA/LTA ratio" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# specific das_ice function\n", "import das_ice.io as di_io\n", "import das_ice.signal.filter as di_filter\n", "import das_ice.signal.picker as di_picker\n", "import das_ice.processes as di_p\n", "import das_ice.plot as di_plt\n", "\n", "# classic librairy\n", "import xarray as xr\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.colors import LogNorm\n", "from tqdm import trange\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'http://127.0.0.1:8787/status'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from dask.distributed import Client,LocalCluster\n", "\n", "cluster = LocalCluster(n_workers=8)\n", "client = Client(cluster)\n", "client.dashboard_link" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Loading data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ds=xr.Dataset()\n", "ds['velocity']=di_io.dask_Terra15('*.hdf5', chunks=\"auto\")\n", "\n", "d_optic_bottom=2505 #m\n", "depth_bh=97 #m\n", "\n", "ds['distance']=-1*(np.abs(ds.distance-d_optic_bottom)-depth_bh)\n", "ds = ds.sortby('distance')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "dvel_decimated=di_filter.decimate(ds.velocity,9)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
<xarray.DataArray 'velocity' (time: 137414, distance: 618)> Size: 340MB\n", "dask.array<getitem, shape=(137414, 618), dtype=float32, chunksize=(6012, 618), chunktype=numpy.ndarray>\n", "Coordinates:\n", " * distance (distance) float64 5kB -1.733e+03 -1.729e+03 ... 93.72 96.19\n", " * time (time) datetime64[ns] 1MB 2024-08-29T05:04:48.597790 ... 2024-0...\n", "Attributes:\n", " client_fn_applied: \n", " dT: 0.000147915811144255\n", " dx: 4.083809535485629\n", " frame_shape: [1082 618]\n", " nT: 1082\n", " nx: 618\n", " recorder_id: T311542\n", " trigger_start_time: -1.0